	Q.P	. Code: 916012	SET - 1	1
	K.S.	R.M. COLLEGE OF	ENGINEERING (AUTONOMOUS), KADAPA	
	В. Т	ech. II Sem. (R15) Su	upple. Examinations of September/October 2020	
т.	2	SUB: Intr	oduction to Data Structures (CSE)	70
11	me : 3	Hours	Max. Marks:	/0
		Answer any FIVE Q	uestions choosing one question from each unit. questions carry Equal Marks.	
			UNIT - I	
1.	(a)	Explain how the Pointer	is Accessed , initialized and Declared using a variable?	8M
	(b)	Write a C Program to in	nplement add, sub, mul and Div using Pointers?	6M
			(OR)	
2.		With an Example Progra	am Explain how the concept of Array is used in Pointers?	14M
			UNIT – II	
3.		Define File? With a	Exmple Program Describe	14M
		i) Fopen() ii) fcl	ose()	
			(OR)	
4.	(a)	Describe the Implement	ation of Malloc() with Example Program?	7M
	(b)	Describe the Implement	ation of Realloc() with Example Program?	7 M
_				1 47 6
5.		Define Data Structure a	ad Differentiate the types of Data Structures with Examples?	14M
6		Define Steels and Exploit	(OR)	1 <i>4</i> N <i>I</i>
0.		Program?	In the Implementation of Stack using an Array with a	14111
			UNIT – IV	
7.		Explain the Concept of	Sparse Matrices with Example Program?	14M
			(OR)	
8.	(a)	Describe Circular Linke	d List with Examples?	7M
	(b)	Describe Garbage Colle	ection With Examples?	7M
			UNIT-V	
9.	(a)	Implement Merge Sort	With an Example C Program?	7M
	(b)	Implement Bubble Sort	with an Example C Program?	7M
			(OR)	
				14M
10.		Explain Two Way Searc	ch with an Example Program?	- 1114

	Q.P	. Code: 916012	SET - 1	1
	K.S.	R.M. COLLEGE OF	ENGINEERING (AUTONOMOUS), KADAPA	
	В. Т	ech. II Sem. (R15) Su	upple. Examinations of September/October 2020	
т.	2	SUB: Intr	oduction to Data Structures (CSE)	70
11	me : 3	Hours	Max. Marks:	/0
		Answer any FIVE Q	uestions choosing one question from each unit. questions carry Equal Marks.	
			UNIT - I	
1.	(a)	Explain how the Pointer	is Accessed , initialized and Declared using a variable?	8M
	(b)	Write a C Program to in	nplement add, sub, mul and Div using Pointers?	6M
			(OR)	
2.		With an Example Progra	am Explain how the concept of Array is used in Pointers?	14M
			UNIT – II	
3.		Define File? With a	Exmple Program Describe	14M
		i) Fopen() ii) fcl	ose()	
			(OR)	
4.	(a)	Describe the Implement	ation of Malloc() with Example Program?	7M
	(b)	Describe the Implement	ation of Realloc() with Example Program?	7 M
_				1 47 6
5.		Define Data Structure a	ad Differentiate the types of Data Structures with Examples?	14M
6		Define Steels and Exploit	(OR)	1 <i>4</i> N <i>I</i>
0.		Program?	In the Implementation of Stack using an Array with a	14111
			UNIT – IV	
7.		Explain the Concept of	Sparse Matrices with Example Program?	14M
			(OR)	
8.	(a)	Describe Circular Linke	d List with Examples?	7M
	(b)	Describe Garbage Colle	ection With Examples?	7M
			UNIT-V	
9.	(a)	Implement Merge Sort	With an Example C Program?	7M
	(b)	Implement Bubble Sort	with an Example C Program?	7M
			(OR)	
				14M
10.		Explain Two Way Searc	ch with an Example Program?	- 1114

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Electrical Circuits (EEE, ECE)

Time: 3 Hours

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT – I

- Illustrate the following 1. (a) (i) Kirchhoff's Laws, (ii) Series and parallel circuit, (iii) Source Transformation Technique
 - Find the Equivalent resistance and the current in each resistance. (b)

(OR)

- 2. (a) Illustrate the classification of Electrical circuit elements.
 - (b) Find the currents and voltages in the circuit shown in Fig.

3. Determine the average and effective values of saw-tooth waveform as shown in below figure. 7M (a)

(b) Illustrate the significance of j-operator. What are the different forms of expressing the 7M sinusoidal quantity in complex form?

(OR)

- Derive an expression for the current, impedance, average power for a series RC circuit 4. 7M (a) excited by a sinusoidally alternating voltage and also find the power factor of the circuit. Draw the phasor diagram.
 - Find the active power, reactive power and draw the power triangle to the given circuit. (b) 7M

7M

7M

7M

UNIT – III

- 5. (a) Compare series and parallel resonant circuits.
 - (b) Given a series RLC circuit with R = 10 ohms, L = 1 mH and C = 1 μF is connected across a 7M sinusoidal source of 20 V with variable frequency.
 Find i) The resonant frequency ii) Q factor of the circuit at resonant frequency iii) Half power frequencies.

(OR)

- 6. (a) What is the current locus diagram? Sketch the current locus diagram of series RC circuit as C 7M varies from 0 to Infinity and show that it is a circle.
 - (b) A voltage $V = 50 \angle 0^0 V$ is applied to a series circuit consisting of fixed inductive reactance X_L 7M = 5 ohms and a variable resistance R. Sketch the admittance and current locus diagrams.
 - UNIT IV

7M

7M

7M

7M

- 7. (a) Define the following:i) Self-inductanceii) Static Induced e.m.f
 - iii) Static Induced e.m.f iv) Dynamically induced e.m.f.(b) Determine the inductance of the three series connected inductors as shown in given figure 7M

ii) Mutual Inductance

- 8. (a) Define and explain the Dot convention.
 - (b) What is duality and Draw a dual circuit to the given circuit

UNIT-V

- 9. (a) Explain the following terms with respect to graph theory i) Node, ii) Tree, iii) Link, iv) Sub-graph
 - (b) Write a fundamental tie-set schedule and write loop equations to the given circuit. 7M

10. (a) Write the complete and reduced incidence matrix for the given graph shown

(b) From the given graph, select a tree with branches 3, 5, 6 and write the fundamental cut-set 7M matrix and write node equations.

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Engineering Drawing - II (CE, ME)

Time : 3 Hours

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

A square pyramid of side of base 30 and axis 50 long is resting on its base on H.P with an edge of the base parallel to V.P. A section plane, perpendicular to V.P and inclined at 45⁰ to H.P bisects the axis. Draw the development of the lateral surface of the cut pyramid.

(OR)

2. A cone of base 50 diameter and height 65 rests with its base on H.P. A section plane 14M perpendicular to V.P and inclined at 30^{0} to H.P bisects the axis of the cone. Draw the development of the lateral surface of the truncated cone.

UNIT – II

3. Draw the view from the front, view from the top and view from the left for figure (1). 14M

(OR)

4. Draw the view from the front, view from the top and view from the right for figure (2). 14M

- 5. A sphere of radius 20 is kept on the top face of a square prism of side of base 40 mm and 14M height 20 mm. The latter is placed on the top face of a cylinder of 65 diameter and 25 mm height. Draw the isometric projection of the combination of solids having common axis.
- 6. Draw an isometric view of the object for the views shown in figure 3.

$\mathbf{UNIT} - \mathbf{IV}$

A vertical cylinder of diameter 60 mm is penetrated by another cylinder of diameter 45 14M mm. The axes of the two cylinders are intersecting at right angle. Draw the projections of the two cylinders, showing the lines (curves) of intersection.

(OR)

8. A vertical cone, base diameter 75 mm and axis 100 mm long, is completely penetrated by 14M a cylinder of diameter 45 mm. The axis of the cylinder is parallel to HP and VP and intersects axis of the cone at a point 28 mm above the base. Draw projections showing curves of intersection.

UNIT-V

9. Write the sequence of command steps required to draw the object shown in figure 4 with 14M the help of LINE command using absolute coordinate system.

(OR)

10. Write the sequence of command steps required to draw the object shown in figure 5 with 14M the help of LINE command using relative rectangular coordinate system.

Q.P.	Code:	916612
------	-------	--------

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: English - 2 (Common to All Branches)

Time : 3 Hours

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

- 1. (a) Write an essay on the **Covid-19 pandemic**.
 - (b) What are the salient features of a good essay?

(OR)

2. (a) Transfer the information in the following Chart.

(b) Assuming your father got down in Bus station give directions to him to reach your college.

UNIT – II

- (a) Three students are going on a bike without face masks, helmets and necessary documents on a busy road on a lockdown day. They were stopped by a traffic police officer. Prepare a dialogue of nearly twenty exchanges between the police officer and the students.
 - (b) What are the things to be kept in mind while writing an interesting dialogue?

(OR)

- 4. (a) Write about the roles and responsibilities of the Members of Interview Board.
 - (b) Write ten frequently asked questions in job interviews with answers.

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Write about the Do's and Don'ts during a Group Discussion.
 - (b) Discuss the several useful strategies to do well in a Group Discussion.

(OR)

- 6. (a) Why are Debates important?
 - (b) What are the strategies to do well in a Debate?

$\mathbf{UNIT} - \mathbf{IV}$

- 7. (a) Prepare a report on the need for constructing an indoor stadium in your college.
 - (b) Assuming that you are in a Gulf Country, write a letter to your father about the difficulties faced by you during the present situation.
- 8. (a) What are the things to be kept in mind to deliver a good speech?
 - (b) Assuming yourself as the District Collector, prepare the text of your speech to be delivered to the students of an Engineering college as the Chief Guest for the Annual day celebrations.

UNIT-V

- 9. (a) Assuming your self as the President of Wipro India, draft an e-mail to all your employees conveying the good news of announcing Deepavali bonus of one-month salary.
 - (b) What is the generally accepted format of a CV? Also, write about the parts of a CV.

(OR)

- 10. (a) Correct the following sentences.
 - (i) John is one of my best friend.
 - (ii) We did not opened the account in the bank.
 - (iii) The price of apples are very high.
 - (iv) The students always prefer Coffee than Tea.
 - (v) The cricket players always prefers practice with security.
 - (vi) No man can serves two masters.
 - (vii) Brett Lee bowls fast than Lillee.
 - (b) What are problems faced when translating an English text into an Indian Language?

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Mathematics - 3 (Common to All branches)

Time: 3 Hours

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

(a)	Reduce	the foll	owing r]	natrix ir	nto norn	nal form	and h	ence fin	d its rank.	7M
	1	3 2 -4 -3								
(b)	Find the	e Eigen	values o	of the m	atrix A	$=\begin{bmatrix}2\\3-4i\end{bmatrix}$	3+ i 2	$\begin{bmatrix} 4i \\ 2 \end{bmatrix}$.		7M
						(OR)				
						∏ 7	2	-2		14M
	Find A	\mathbf{A}^{-1} and \mathbf{A}	A ⁴ for	the m	atrix A	$A = \begin{vmatrix} -6 \\ 6 \end{vmatrix}$	-1	$\begin{array}{c c} 2 \\ -1 \end{array}$ by	using Cayley-Hamilton	
	theoren	۱.				Lo	2	1		
					TIN	II _ TI				
	Defi	ne algeb	raic and	d transc	endenta	l equatio	on and	t also c	ompute a real root of the	14M
	equatio	n $3x = c$	$\cos x + 1$							
	1					(OR)				
	Solve t	he equa	tions x	+2y+2	z = 4, 2.2	x - 3y - 3	z = -3	3, 3x + y	+2z = 3 by using Crout's	14M
	method									
					UN	III – III	[
	Constru	ict New	vton's f	orward	interpo	lation p	olyno	mial for	r the following data and	14M
	hence f	ind the v	value of	y for x	= 5.5 .			-		
	x	3	5	7	9	1	1			
	У	27	125	343	3 72	29 1	331			
						(OR)				
	Fit a cu	rve $y =$	ax^b to t	he follo	wing da	ita:				14M
	x	1	2	3	4	5	6			
	У	2.98	4.26	5.21	6.10	6.80	7.50			
		1			UN	IT – IV				
	d	$v d^2$	2 v							14M
			V							1 1141
	Find $\frac{d}{dt}$	$\frac{d}{dx}$ and $\frac{d}{dx}$	$\frac{y}{c^2}$ at $x =$	=1.5 for	the foll	owing d	ata			1 1111
	(a) (b)	(a) Reduce $\begin{bmatrix} 4 \\ 1 \\ -1 \\ -1 \end{bmatrix}$ (b) Find the Find A theorem Define equation Solve the method Construction Fit a cuncture for $x = y$.	(a) Reduce the foll $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen Find A^{-1} and A^{-1	(a) Reduce the following r $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of Find A^{-1} and A^{4} for theorem. Define algebraic and equation $3x = \cos x + 1$ Solve the equations x method. Construct Newton's for hence find the value of $\boxed{x 3 5}$ y 27 125 Fit a curve $y = ax^{b}$ to t $\boxed{x 1 2}$ y 2.98 4.26	(a) Reduce the following matrix in $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the m Find A^{-1} and A^{4} for the m theorem. Define algebraic and transce equation $3x = \cos x + 1$. Solve the equations $x + 2y + 3$ method. Construct Newton's forward hence find the value of y for x $\boxed{x 3 5 7}$ y 27 125 343 Fit a curve $y = ax^{b}$ to the follo $\boxed{x 1 2 3}$ y 2.98 4.26 5.21	(a) Reduce the following matrix into norm $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix A Find A^{-1} and A^{4} for the matrix A theorem. UN Define algebraic and transcendenta equation $3x = \cos x + 1$. Solve the equations $x + 2y + z = 4, 2$: method. UN Construct Newton's forward interpo hence find the value of y for $x = 5.5$. $\boxed{x \ 3 \ 5 \ 7 \ 9}$ $y \ 27 \ 125 \ 343 \ 72$ Fit a curve $y = ax^{b}$ to the following da $\boxed{x \ 1 \ 2 \ 3 \ 4}$ $y \ 2.98 \ 4.26 \ 5.21 \ 6.10$ UN	(a) Reduce the following matrix into normal form $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix $A = \begin{bmatrix} 2 \\ 3-4 \end{bmatrix}$ (OR) Find A^{-1} and A^{4} for the matrix $A = \begin{bmatrix} 7 \\ -6 \\ 6 \end{bmatrix}$ theorem. $UNIT - II$ Define algebraic and transcendental equation $3x = \cos x + 1$. (OR) Solve the equations $x + 2y + z = 4, 2x - 3y - 2y + 2y + 2y = 4, 2x - 3y - 2y + 2$	(a) Reduce the following matrix into normal form and h $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix $A = \begin{bmatrix} 2 & 3+ \\ 3-4i & 2 \end{bmatrix}$ (OR) Find A^{-1} and A^{4} for the matrix $A = \begin{bmatrix} 7 & 2 \\ -6 & -1 \\ 6 & 2 \end{bmatrix}$ theorem. UNIT – II Define algebraic and transcendental equation and equation $3x = \cos x + 1$. (OR) Solve the equations $x + 2y + z = 4$, $2x - 3y - z = -3$ method. UNIT – III Construct Newton's forward interpolation polynometric hence find the value of y for $x = 5.5$. $\boxed{x 3 5 7 9 11}_{y 27 125 343 729 1331}$ (OR) Fit a curve $y = ax^{b}$ to the following data: $\boxed{x 1 2 3 4 5 6}_{y 2.98 4.26 5.21 6.10 6.80 7.50}$ UNIT – IV	(a) Reduce the following matrix into normal form and hence fine $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix $A = \begin{bmatrix} 2 & 3+4i \\ 3-4i & 2 \end{bmatrix}$. (OR) Find A^{-1} and A^{4} for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ by theorem. UNIT – II Define algebraic and transcendental equation and also c equation $3x = \cos x + 1$. (OR) Solve the equations $x + 2y + z = 4$, $2x - 3y - z = -3$, $3x + y$ method. UNIT – III Construct Newton's forward interpolation polynomial for hence find the value of y for $x = 5.5$. $\boxed{x 3 5 7 9 11} \\ y 27 125 343 729 1331} \\ (OR)$ Fit a curve $y = ax^{b}$ to the following data: $\boxed{x 1 2 3 4 5 6} \\ y 2.98 4.26 5.21 6.10 6.80 7.50} \\$ UNIT – IV	(a) Reduce the following matrix into normal form and hence find its rank. $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix $A = \begin{bmatrix} 2 & 3+4i \\ 3-4i & 2 \end{bmatrix}$. (OR) Find A^{-1} and A^{4} for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ by using Cayley-Hamilton theorem. UNIT – II Define algebraic and transcendental equation and also compute a real root of the equation $3x = \cos x + 1$. (OR) Solve the equations $x + 2y + z = 4$, $2x - 3y - z = -3$, $3x + y + 2z = 3$ by using Crout's method. UNIT – III Construct Newton's forward interpolation polynomial for the following data and hence find the value of y for $x = 5.5$. $\boxed{x 3 5 7 9 11 \\ y 27 125 343 729 1331 \\ OR}$ Fit a curve $y = ax^{b}$ to the following data: $x 1 2 3 4 5 6 \\ y 2.98 4.26 5.21 6.10 6.80 7.50 \\ UNIT - IV$

x	1.5	2.0	2.5	3.0	3.5	4.0
У	3.375	7.000	13.625	24.000	38.875	59.000
				(OR)	

8. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin x \, dx$ by using (i) Trapezoidal rule and (ii) Simpson's $\frac{1}{3}$ rule.

UNIT-V

14M

9. Find y(0.3) given $\frac{dy}{dx} + y + xy^2 = 0$, y(0) = 1 by taking h = 0.1 using Runge-Kutta 14M method.

10. (OR)
Given
$$\frac{dy}{dx} = x + y$$
, $y(0) = 1$, find y at $x = 0.1, 0.2$ and 0.3 by Taylor's series method. 14M

	Q.P	P. Code: 917012	SET - 1	
	K.S.	R.M. COLLEGE OF ENGINEERING (AUTONON Tech. U.Sem. (B15) Supple, Exeminations of Sentem	AOUS), KADAPA	
	D. I	Tech. II Sem. (K15) Supple. Examinations of Septem $SUB \cdot Environmental Studies (CE_ME)$)	
Ti	me : 3	B Hours	Max. Marks: 70	
		Answer any FIVE Questions choosing one question fr	om each unit.	
		All questions carry Equal Marks.		
1	(a)	UNIT - 1	ation	714
1.	(a) (b)	What are the different activities that can be taken unto increa	alloll	/ IVI 7 M
	(0)	environmental issues	ase public awareness of	/ 1 V1
-		(OR)		
2.	(a)	Write notes on effects of deforestation		7M
	(b)	Role of individual in conservation of natural resources		7M
-		UNIT – II		
3.		Give a detailed account of introduction, types, characteristic functions of grassland ecosystem	s, features, structure and	14M
4		(OR)		1 43 4
4.		discuss their significance.	is? Give examples and	14M
		UNIT – III		
5.	(a)	Define biodiversity. Explain the types of biodiversity.		7M
	(b)	Write a short note on bio-geographical classification of India.		7M
_		(OR)		
6.	(a)	What are the major threats to biodiversity?		7M
	(b)	Write notes on endangered and endemic species of India		7M
		UNIT – IV		
7.	(a)	Define Water pollution and discuss its effects and control mea	asures	7M
	(b)	Define Noise pollution and discuss its effects and control met	asures	7 M
8	(2)	(OK) Write about solid waste management		ом
0.	(a) (b)	Write notes on Darkening effect of Tai - Mahal		5M
	(0)	UNIT-V		5111
9.	(a)	Urban problems related to energy.		7M
	(b)	Write notes on Rain water harvesting.		7M
	<u>\</u> -/	(OR)		
10.	(a)	Write about role of Information Technology in Environment a	and Human health.	9M
	(b)	Write notes on Human rights		5M

	~ -		
	Q.P	P. Code: 91/212 SET	- 1
	K.S.	.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAP	A
	B. T	Fech. II Sem. (R15) Supple. Examinations of September/October 202	0
		SUB: Programming in C (CE, ME)	
Tin	ne : 3	B Hours Max. Mark	as: 70
		Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.	
		UNIT - I	
1.	(a)	Define Variable? Explain declaration and initialization of variables in detail?	7M
	(b)	Define Algorithm? Write an algorithm to find whether a number is ArmStr number or not?	ong 7M
		(OR)	
2.	(a)	Explain System Development Tools in detail?	7M
	(b)	Explain the structure of C Program? Justify with an example program.	7M
		UNIT – II	
3.	(a)	Define Expression? Explain Operator Precedence and Associativity?	5M
	(b)	Write a C Program to find largest number among 4 numbers?	9M
		(OR)	
4.	(a)	Write a C Program to print Fibonacci Series?	7M
	(b)	Define Operator? Explain various Operators in C?	7M
~			5 3 6
5.	(a)	Explain various Loop Control Statements in C?	5M
	(b)	Write a C Program to find factorial of a given number using recursion?	9M
6	(a)	(OR) Write a C Brogram to Brint N Netural numbers using For Loon?	5M
0.	(a)	Furlain Loop Defined Functions in C2	
	(0)	Explain User Defined Functions in C?	9101
7	(a)	UNII - IV	714
1.	(a)	Write a C program for concatenating two Strings?	/M 7M
	(0)	Define String? Explain various String Handling Functions in C with examples?	/ 1 VI
0	$\langle \rangle$	(OR)	714
8.	(a) (b)	Explain Linear Search with example?	/M 7M
	(0)	Explain Exchange Sort with example?	/ 1/1
0	(a)	UNIT-V Define Structure? Explain declaration and initialization of a Structure?	714
).	(a)	Explain Logical Bitwise and Shift Operators?	/ IVI 71 /
	(0)		/1 VI
10.	(a)	(ON) Define Union? Explain declaration and initialization of a Union?	7M
- ••	(h)	Write a C Program to find addition of 2 Numbers using pointers?	7 IVI 7 M
		whice a C r rogram to mile addition of 2 roumoers using politices:	/ 11/1

	Q.P	. Code: 917612		SET - 1	
L	K.S.I B. T	R.M. COLLEGE OF ech. II Sem. (R15) Su	F ENGINEERING (AUTONOMOUS), I upple. Examinations of September/Octo : Mathematics – II (CE_ME)	KADAPA bber 2020	1
Т	ime : 3	Hours	. Mumemanes – II (CE, ME)	Max. Marks: 70	
		Answer any FIVE Q All o	uestions choosing one question from each u questions carry Equal Marks.	ınit.	
			UNIT - I		
1.	(a)	Find the directional derivative direction of the vector i	ivative of $f(x, y, z) = xy^2 z + x^2 yz^3$ at the point (2 +2j+2k	2, -1, 1) in the	7M
	(b)	If $\overline{f} = (2x+3y)i + (4y-4y)i +$	(2z)j + (x + pz)k is Solenoidal, find p (OR)		7M
2.	(a)	Prove that $\nabla(r^n) = nr^{n-2}$	$2^{2}\overline{r}$		7M
	(b)	Evaluate by Green's the	eorem $\iint_C (y - \sin x) dx + \cos x dy$ Where C is the tr	iangle	7M
		enclosed by the lines y	$=0, x = \frac{\pi}{2}, \pi y = 2x$		
2			UNIT – II		714
3.	(a)	Find $L\left(\frac{\sin 3t \cos t}{t}\right)$			/M
	(b)	Evaluate $\int_{0}^{\infty} te^{-3t} \sin t dt$	using Laplace Transform		7M
			(OR)		
4.	(a)	Find $L(t^2u(t-2))$			7M
	(b)	Find the Laplace transfo	form of the full-wave rectifier $f(t) = E \sin \omega t$, $0 < t$	$t < \frac{\pi}{\omega}$, having	7M
		period $\frac{\pi}{\omega}$			
5	(\mathbf{a})		UNIT – III		714
5.	(<i>a</i>)	Find the inverse Laplace	e transform of $\frac{s+2}{s^2-4s+12}$		/ 101
	(b)	Find $L^{-1}\left(\frac{1}{s(s^2+a^2)}\right)$ us	s' = 4s + 15 sing partial fractions		7M
			(OR)		
6.	(a)	Use Convolution theore	m, find $L^{-1}\left(\frac{1}{(s+a)(s+b)}\right)$		7M
	(b)	Use Laplace transform r	nethod, solve $(D^2 + 4D + 5)y = 5$, given $y(0) = 0$	y'(0) = 0	7M
7	(a)	Expand $f(x) = x$ as hal	f range sine series in $0 < r < 2$		7M
	(b)	Obtain the Fourier cosin	the series of $x \sin x$ in $0 \le x \le \pi$		7M
			(OR)		-

Find the Fourier series expansion for f(x), if $f(x) = -\pi, -\pi < x < 0$ = $x, 0 < x < \pi$ Deduce that 14M

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

8.

UNIT-V

9. (a) Form the Partial Differential Equation by eliminating arbitrary constants for 7M $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

(b) Using the method of separation of variables, solve $2x \frac{\partial z}{\partial x} - 3y \frac{\partial z}{\partial y} = 0$ 7M

(OR)

10. A tightly stretched string with fixed end points x=0 and x=l is initially in a 14M position given by $y = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement y(x,t)

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Human Values and Professional Ethics (EEE, ECE & CSE)

Time : 3 Hours

(b)

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

- 1. (a) What are the types of inquiries?
 - (b) What are the roots of your personal ethics?

(OR)

- 2. (a) What are Engineering ethics?
 - (b) Explain Kohlberg's Theory.

UNIT – II

- 3. (a) Discuss Research Ethics in detail.
 - (b) What is Morality?

(OR)

- 4. (a) What are the Three types of Enquiry?
 - (b) What is Moral Dilemma?

UNIT – III

- 5. (a) What are the responsibilities of a safety engineer?
 - What are the factors for safety and risk?

(OR)

- 6. (a) Explain the concept of Risk-Benefit Analysis?
 - (b) Discuss the Bhopal gas tragedy.

UNIT – IV

- 7. (a) Discuss the Intellectual Property Rights (IPR).
 - (b) How do engineers help society?

(OR)

- 8. (a) What are Professional rights?
 - (b) What are the social responsibilities of engineers?

UNIT-V

- 9. (a) Write a detailed note on Business Ethics
 - (b) What is the role of an engineering manager? (OR)
- 10. (a) What are the advantages of computer ethics?
 - (b) What are the 4 primary issues of computer ethics?

	Q.P	P. Code: 918412	SET - 1	
	K.S.] B. T	S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS) Tech. II Sem. (R15) Supple. Examinations of September/(SUB: Engineering Chemistry (EEE_ECE & CSE)	S), KADAPA October 2020	
Tin	ne : 3	3 Hours	, Max. Marks: 70)
		Answer any FIVE Questions choosing one question from ea All questions carry Equal Marks.	ch unit.	
		UNIT - I		
1.		Explain the softened of water by Ion-exchange process and explain the ad methods.	vantages over other	14M
		(OR)		
2.	(a)	Define hardness and explain types of hardness		7M
	(b)	Write a short note on disadvantages of water.		7 M
2	(-)	UNIT – II	ingtion	714
3.	(a)	Differences between Addition polymerisation and Condensation polymer	Isation	/M 7M
	(b)	Differences between Thermo plastics and Thermosetting plastics		/ 1/1
Δ	(a)	(OK) Write a short note on preparation, properties and applications of Ba	kelite	7M
	(u) (b)	Write a short note on inorganic polymers	Refite	7M
		UNIT – III		
5.		Define secondary battery and explain working nature of lead acid diagram	battery with neat	14M
		(OR)		
6.	(a)	Define corrosion and explain the mechanism of the dry corrosion.		8M
	(b)	Write a short note on sacrificial anode cathodic protection		6M
7.		UNIT – IV What are the characteristics of metallurgical coke? Describe the manufact coke by Otto Haffman's method?	ure of metallurgical	14M
		(OR)		
8.		Define lubricant& explain properties of lubricants		14M
		UNIT-V		
9.		Write 12 principles of green chemistry and its applications. (OR)		14M
10.	(a)	Write a short note on Laws of photo chemistry		7M
	(b)	Explain action of catalyst & applications of catalyst		7M

Q.P. Code: 918612

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Engineering Physics (EEE, ECE & CSE)

Time: 3 Hours

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

- Describe with necessary theory, Fraunhofer diffraction due to a double slit. 1. (a)
 - Newton's rings are formed in reflected light with red light of λ =670 nm and with air film. (b) 4MThe radius of the 20^{th} dark ring is found to be 1.1 x 10^{-2} m. Find the radius of curvature of the lens and the radius of 30th dark ring.

(OR)

2. What are Einstein's coefficients? Obtain the relation between them. 10M (a) If the Acceptance Angle and fractional change in the refractive index of a fibre material are 4M(b) 23⁰ and 0.05 respectively. Calculate the refractive indices of the Core and Cladding of that fibre. UNIT – II Describe the Powder method for X-ray diffraction. Discuss the formation of diffraction 3. (a) 10M pattern on the photographic plate. The radius of Cu (fcc) is 1.278 A⁰. The first order Bragg reflection from (111) planes appear (b) 4Mat an angle of 21.7° . Determine the Wavelength of X-rays used. (OR) Write any six properties of Ultrasonics. Explain how Ultrasonics are used to detect the flaws 4. (a) 10M in a body, using Non-destructive testing. An ultrasonic generator has a quartz crystal whose thickness is 2 mm, density is 2650 kgm⁻³ (b) 4Mand Young's modulus is 7.9X10¹⁰ Nm⁻². Find the fundamental frequency of the generator. UNIT – III 5. (a) What are the properties of matter waves? Derive the de-Broglie equation for an electron, 10M accelerated through a potential difference of V volts. Calculate the minimum energy in eV that an electron can possess in an infinitely deep (b) 4Mpotential well of 4nm width. (OR)What are the salient features of Fermi-Dirac statistics? Illustrate the effect of temperature 6. (a) 10M on the F-D distribution function. Calculate the electrical conductivity of Copper, if the relaxation time of electrons at 300K is (b) 4M 10^{-14} Sec. (Concentration of free electrons in Copper is 8.44×10^{28}) UNIT - IV Explain the origin of Magnetic moment. Find the magnetic dipole moments due to orbital 7. 10M (a) and spin motions of an electron. The magnetic field strength of Copper is 10^{6} A/m. If the Magnetic Susceptibility of Copper (b) 4Mis -0.8×10^{-5} . Calculate the flux density and magnetization in Copper. (OR)Explain DC and AC Josephson effects. 8. (a) 10M Write notes on any four applications of Superconductors. 4M(b) UNIT-V 9. Derive the expressions for Drift and Diffusion currents in a Semiconductors. 8M (a) (b) Explain the formation of P-N junction diode. 6M (OR) 10. Explain any Eight physical properties of nanoparticles. (a) 8M Describe Chemical Vapour Deposition method of synthesis of nanomaterials. (b) 6M

Max. Marks: 70

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Electrical Circuits (EEE, ECE)

Time: 3 Hours

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT – I

- Illustrate the following 1. (a) (i) Kirchhoff's Laws, (ii) Series and parallel circuit, (iii) Source Transformation Technique
 - Find the Equivalent resistance and the current in each resistance. (b)

(OR)

- 2. (a) Illustrate the classification of Electrical circuit elements.
 - (b) Find the currents and voltages in the circuit shown in Fig.

3. Determine the average and effective values of saw-tooth waveform as shown in below figure. 7M (a)

(b) Illustrate the significance of j-operator. What are the different forms of expressing the 7M sinusoidal quantity in complex form?

(OR)

- Derive an expression for the current, impedance, average power for a series RC circuit 4. 7M (a) excited by a sinusoidally alternating voltage and also find the power factor of the circuit. Draw the phasor diagram.
 - Find the active power, reactive power and draw the power triangle to the given circuit. (b) 7M

7M

7M

7M

UNIT – III

- 5. (a) Compare series and parallel resonant circuits.
 - (b) Given a series RLC circuit with R = 10 ohms, L = 1 mH and C = 1 μF is connected across a 7M sinusoidal source of 20 V with variable frequency.
 Find i) The resonant frequency ii) Q factor of the circuit at resonant frequency iii) Half power frequencies.

(OR)

- 6. (a) What is the current locus diagram? Sketch the current locus diagram of series RC circuit as C 7M varies from 0 to Infinity and show that it is a circle.
 - (b) A voltage $V = 50 \angle 0^0 V$ is applied to a series circuit consisting of fixed inductive reactance X_L 7M = 5 ohms and a variable resistance R. Sketch the admittance and current locus diagrams.
 - UNIT IV

7M

7M

7M

7M

- 7. (a) Define the following:i) Self-inductanceii) Static Induced e.m.f
 - iii) Static Induced e.m.f iv) Dynamically induced e.m.f.(b) Determine the inductance of the three series connected inductors as shown in given figure 7M

ii) Mutual Inductance

- 8. (a) Define and explain the Dot convention.
 - (b) What is duality and Draw a dual circuit to the given circuit

UNIT-V

- 9. (a) Explain the following terms with respect to graph theory i) Node, ii) Tree, iii) Link, iv) Sub-graph
 - (b) Write a fundamental tie-set schedule and write loop equations to the given circuit. 7M

10. (a) Write the complete and reduced incidence matrix for the given graph shown

(b) From the given graph, select a tree with branches 3, 5, 6 and write the fundamental cut-set 7M matrix and write node equations.

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Engineering Drawing - II (CE, ME)

Time : 3 Hours

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

A square pyramid of side of base 30 and axis 50 long is resting on its base on H.P with an edge of the base parallel to V.P. A section plane, perpendicular to V.P and inclined at 45⁰ to H.P bisects the axis. Draw the development of the lateral surface of the cut pyramid.

(OR)

2. A cone of base 50 diameter and height 65 rests with its base on H.P. A section plane 14M perpendicular to V.P and inclined at 30^{0} to H.P bisects the axis of the cone. Draw the development of the lateral surface of the truncated cone.

UNIT – II

3. Draw the view from the front, view from the top and view from the left for figure (1). 14M

(OR)

4. Draw the view from the front, view from the top and view from the right for figure (2). 14M

- 5. A sphere of radius 20 is kept on the top face of a square prism of side of base 40 mm and 14M height 20 mm. The latter is placed on the top face of a cylinder of 65 diameter and 25 mm height. Draw the isometric projection of the combination of solids having common axis.
- 6. Draw an isometric view of the object for the views shown in figure 3.

$\mathbf{UNIT} - \mathbf{IV}$

A vertical cylinder of diameter 60 mm is penetrated by another cylinder of diameter 45 14M mm. The axes of the two cylinders are intersecting at right angle. Draw the projections of the two cylinders, showing the lines (curves) of intersection.

(OR)

8. A vertical cone, base diameter 75 mm and axis 100 mm long, is completely penetrated by 14M a cylinder of diameter 45 mm. The axis of the cylinder is parallel to HP and VP and intersects axis of the cone at a point 28 mm above the base. Draw projections showing curves of intersection.

UNIT-V

9. Write the sequence of command steps required to draw the object shown in figure 4 with 14M the help of LINE command using absolute coordinate system.

(OR)

10. Write the sequence of command steps required to draw the object shown in figure 5 with 14M the help of LINE command using relative rectangular coordinate system.

Q.P.	Code:	916612
------	-------	--------

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: English - 2 (Common to All Branches)

Time : 3 Hours

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

- 1. (a) Write an essay on the **Covid-19 pandemic**.
 - (b) What are the salient features of a good essay?

(OR)

2. (a) Transfer the information in the following Chart.

(b) Assuming your father got down in Bus station give directions to him to reach your college.

UNIT – II

- (a) Three students are going on a bike without face masks, helmets and necessary documents on a busy road on a lockdown day. They were stopped by a traffic police officer. Prepare a dialogue of nearly twenty exchanges between the police officer and the students.
 - (b) What are the things to be kept in mind while writing an interesting dialogue?

(OR)

- 4. (a) Write about the roles and responsibilities of the Members of Interview Board.
 - (b) Write ten frequently asked questions in job interviews with answers.

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Write about the Do's and Don'ts during a Group Discussion.
 - (b) Discuss the several useful strategies to do well in a Group Discussion.

(OR)

- 6. (a) Why are Debates important?
 - (b) What are the strategies to do well in a Debate?

$\mathbf{UNIT} - \mathbf{IV}$

- 7. (a) Prepare a report on the need for constructing an indoor stadium in your college.
 - (b) Assuming that you are in a Gulf Country, write a letter to your father about the difficulties faced by you during the present situation.
- 8. (a) What are the things to be kept in mind to deliver a good speech?
 - (b) Assuming yourself as the District Collector, prepare the text of your speech to be delivered to the students of an Engineering college as the Chief Guest for the Annual day celebrations.

UNIT-V

- 9. (a) Assuming your self as the President of Wipro India, draft an e-mail to all your employees conveying the good news of announcing Deepavali bonus of one-month salary.
 - (b) What is the generally accepted format of a CV? Also, write about the parts of a CV.

(OR)

- 10. (a) Correct the following sentences.
 - (i) John is one of my best friend.
 - (ii) We did not opened the account in the bank.
 - (iii) The price of apples are very high.
 - (iv) The students always prefer Coffee than Tea.
 - (v) The cricket players always prefers practice with security.
 - (vi) No man can serves two masters.
 - (vii) Brett Lee bowls fast than Lillee.
 - (b) What are problems faced when translating an English text into an Indian Language?

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Mathematics - 3 (Common to All branches)

Time: 3 Hours

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

(a)	Reduce	the foll	owing r]	natrix ir	nto norn	nal form	and h	ence fin	d its rank.	7M
	1	3 2 -4 -3								
(b)	Find the	e Eigen	values o	of the m	atrix A	$=\begin{bmatrix}2\\3-4i\end{bmatrix}$	3+ i 2	$\begin{bmatrix} 4i \\ 2 \end{bmatrix}$.		7M
						(OR)				
						∏ 7	2	-2		14M
	Find A	\mathbf{A}^{-1} and \mathbf{A}	A ⁴ for	the m	atrix A	$A = \begin{vmatrix} -6 \\ 6 \end{vmatrix}$	-1	$\begin{array}{c c} 2 \\ -1 \end{array}$ by	using Cayley-Hamilton	
	theoren	۱.				Lo	2	1		
					TIN	II _ TI				
	Defi	ne algeb	raic and	d transc	endenta	l equatio	on and	t also c	ompute a real root of the	14M
	equatio	n $3x = c$	$\cos x + 1$							
	1					(OR)				
	Solve t	he equa	tions x	+2y+2	z = 4, 2.2	x - 3y - 3	z = -3	3, 3x + y	+2z = 3 by using Crout's	14M
	method									
					UN	III – III	[
	Constru	ict New	vton's f	orward	interpo	lation p	olyno	mial for	r the following data and	14M
	hence f	ind the v	value of	y for x	= 5.5 .			-		
	x	3	5	7	9	1	1			
	У	27	125	343	3 72	29 1	331			
						(OR)				
	Fit a cu	rve $y =$	ax^b to t	he follo	wing da	ita:				14M
	x	1	2	3	4	5	6			
	У	2.98	4.26	5.21	6.10	6.80	7.50			
		1			UN	IT – IV				
	d	$v d^2$	2 v							14M
			V							1 1141
	Find $\frac{d}{dt}$	$\frac{d}{dx}$ and $\frac{d}{dx}$	$\frac{y}{c^2}$ at $x =$	=1.5 for	the foll	owing d	ata			1 1111
	(a) (b)	(a) Reduce $\begin{bmatrix} 4 \\ 1 \\ -1 \\ -1 \end{bmatrix}$ (b) Find the Find A theorem Define equation Solve the method Construction Fit a cuncture for $x = y$.	(a) Reduce the foll $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen Find A^{-1} and A^{-1	(a) Reduce the following r $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of Find A^{-1} and A^{4} for theorem. Define algebraic and equation $3x = \cos x + 1$ Solve the equations x method. Construct Newton's for hence find the value of $\boxed{x 3 5}$ y 27 125 Fit a curve $y = ax^{b}$ to t $\boxed{x 1 2}$ y 2.98 4.26	(a) Reduce the following matrix in $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the m Find A^{-1} and A^{4} for the m theorem. Define algebraic and transce equation $3x = \cos x + 1$. Solve the equations $x + 2y + 3$ method. Construct Newton's forward hence find the value of y for x $\boxed{x 3 5 7}$ y 27 125 343 Fit a curve $y = ax^{b}$ to the follo $\boxed{x 1 2 3}$ y 2.98 4.26 5.21	(a) Reduce the following matrix into norm $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix A Find A^{-1} and A^{4} for the matrix A theorem. UN Define algebraic and transcendenta equation $3x = \cos x + 1$. Solve the equations $x + 2y + z = 4, 2$: method. UN Construct Newton's forward interpo hence find the value of y for $x = 5.5$. $\boxed{x \ 3 \ 5 \ 7 \ 9}$ $y \ 27 \ 125 \ 343 \ 72$ Fit a curve $y = ax^{b}$ to the following da $\boxed{x \ 1 \ 2 \ 3 \ 4}$ $y \ 2.98 \ 4.26 \ 5.21 \ 6.10$ UN	(a) Reduce the following matrix into normal form $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix $A = \begin{bmatrix} 2 \\ 3-4 \end{bmatrix}$ (OR) Find A^{-1} and A^{4} for the matrix $A = \begin{bmatrix} 7 \\ -6 \\ 6 \end{bmatrix}$ theorem. $UNIT - II$ Define algebraic and transcendental equation $3x = \cos x + 1$. (OR) Solve the equations $x + 2y + z = 4, 2x - 3y - 2y + 2y + 2y = 4, 2x - 3y - 2y + 2$	(a) Reduce the following matrix into normal form and h $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix $A = \begin{bmatrix} 2 & 3+ \\ 3-4i & 2 \end{bmatrix}$ (OR) Find A^{-1} and A^{4} for the matrix $A = \begin{bmatrix} 7 & 2 \\ -6 & -1 \\ 6 & 2 \end{bmatrix}$ theorem. UNIT – II Define algebraic and transcendental equation and equation $3x = \cos x + 1$. (OR) Solve the equations $x + 2y + z = 4$, $2x - 3y - z = -3$ method. UNIT – III Construct Newton's forward interpolation polynometric hence find the value of y for $x = 5.5$. $\boxed{x 3 5 7 9 11}_{y 27 125 343 729 1331}$ (OR) Fit a curve $y = ax^{b}$ to the following data: $\boxed{x 1 2 3 4 5 6}_{y 2.98 4.26 5.21 6.10 6.80 7.50}$ UNIT – IV	(a) Reduce the following matrix into normal form and hence fine $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix $A = \begin{bmatrix} 2 & 3+4i \\ 3-4i & 2 \end{bmatrix}$. (OR) Find A^{-1} and A^{4} for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ by theorem. UNIT – II Define algebraic and transcendental equation and also c equation $3x = \cos x + 1$. (OR) Solve the equations $x + 2y + z = 4$, $2x - 3y - z = -3$, $3x + y$ method. UNIT – III Construct Newton's forward interpolation polynomial for hence find the value of y for $x = 5.5$. $\boxed{x 3 5 7 9 11} \\ y 27 125 343 729 1331} \\ (OR)$ Fit a curve $y = ax^{b}$ to the following data: $\boxed{x 1 2 3 4 5 6} \\ y 2.98 4.26 5.21 6.10 6.80 7.50} \\$ UNIT – IV	(a) Reduce the following matrix into normal form and hence find its rank. $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (b) Find the Eigen values of the matrix $A = \begin{bmatrix} 2 & 3+4i \\ 3-4i & 2 \end{bmatrix}$. (OR) Find A^{-1} and A^{4} for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ by using Cayley-Hamilton theorem. UNIT – II Define algebraic and transcendental equation and also compute a real root of the equation $3x = \cos x + 1$. (OR) Solve the equations $x + 2y + z = 4$, $2x - 3y - z = -3$, $3x + y + 2z = 3$ by using Crout's method. UNIT – III Construct Newton's forward interpolation polynomial for the following data and hence find the value of y for $x = 5.5$. $\boxed{x 3 5 7 9 11 \\ y 27 125 343 729 1331 \\ OR}$ Fit a curve $y = ax^{b}$ to the following data: $x 1 2 3 4 5 6 \\ y 2.98 4.26 5.21 6.10 6.80 7.50 \\ UNIT - IV$

x	1.5	2.0	2.5	3.0	3.5	4.0
у	3.375	7.000	13.625	24.000	38.875	59.000
				(OR)	

8. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin x \, dx$ by using (i) Trapezoidal rule and (ii) Simpson's $\frac{1}{3}$ rule.

UNIT-V

14M

9. Find y(0.3) given $\frac{dy}{dx} + y + xy^2 = 0$, y(0) = 1 by taking h = 0.1 using Runge-Kutta 14M method.

10. (OR)
Given
$$\frac{dy}{dx} = x + y$$
, $y(0) = 1$, find y at $x = 0.1, 0.2$ and 0.3 by Taylor's series method. 14M

	Q.P	P. Code: 917012	SFT - 1	7
	K.S.	R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA	
	D. I	SUR: Environmental Studies (CF_ME)	clober 2020	
Ti	me : 3	B Hours	Max. Marks: 70)
		Answer any FIVE Questions choosing one question from eac All questions carry Equal Marks	h unit.	
		In questions curry Equal Marins.		
1.	(a)	Define environment and explain scope of environmental education		7M
	(b)	What are the different activities that can be taken upto increase put environmental issues	olic awareness of	7M
		(OR)		
2.	(a)	Write notes on effects of deforestation		7M
	(b)	Role of individual in conservation of natural resources		7M
		UNIT – II		
3.		Give a detailed account of introduction, types, characteristics, feature functions of grassland ecosystem	es, structure and	14M
4.		(OR) What are food chains, food webs and ecological pyramids? Giv discuss their significance.	e examples and	14M
		UNIT – III		
5.	(a)	Define biodiversity. Explain the types of biodiversity.		7M
	(b)	Write a short note on bio-geographical classification of India.		7M
		(OR)		
6.	(a)	What are the major threats to biodiversity?		7M
	(b)	Write notes on endangered and endemic species of India		7M
		$\mathbf{UNIT} - \mathbf{IV}$		
7.	(a)	Define Water pollution and discuss its effects and control measures		7M
	(b)	Define Noise pollution and discuss its effects and control measures		7M
0	(a)	(OR)		01
0.	(a)	Write about solid waste management.		91VI 5M
	(0)	UNIT_V		JIVI
9.	(a)	Urban problems related to energy.		7M
	(u) (h)	Write notes on Rain water harvesting		7M
		(OR)		/ 171
10.	(a)	Write about role of Information Technology in Environment and Hun	nan health.	9M
	(b)	Write notes on Human rights		5M

	~ -		
	Q.P	P. Code: 91/212 SET	- 1
	K.S.	.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAP	A
	B. T	Fech. II Sem. (R15) Supple. Examinations of September/October 202	0
		SUB: Programming in C (CE, ME)	
Tin	ne : 3	B Hours Max. Mark	as: 70
		Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.	
		UNIT - I	
1.	(a)	Define Variable? Explain declaration and initialization of variables in detail?	7M
	(b)	Define Algorithm? Write an algorithm to find whether a number is ArmStr number or not?	ong 7M
		(OR)	
2.	(a)	Explain System Development Tools in detail?	7M
	(b)	Explain the structure of C Program? Justify with an example program.	7M
		UNIT – II	
3.	(a)	Define Expression? Explain Operator Precedence and Associativity?	5M
	(b)	Write a C Program to find largest number among 4 numbers?	9M
		(OR)	
4.	(a)	Write a C Program to print Fibonacci Series?	7M
	(b)	Define Operator? Explain various Operators in C?	7M
~			5 3 6
5.	(a)	Explain various Loop Control Statements in C?	5M
	(b)	Write a C Program to find factorial of a given number using recursion?	9M
6	(a)	(OR) Write a C Brogram to Brint N Netural numbers using For Loon?	5M
0.	(a)	Furlain Loop Defined Functions in C2	
	(0)	Explain User Defined Functions in C?	9101
7	(a)	UNII - IV	714
1.	(a)	Write a C program for concatenating two Strings?	/M 7M
	(0)	Define String? Explain various String Handling Functions in C with examples?	/ 1 VI
0	$\langle \rangle$	(OR)	714
8.	(a) (b)	Explain Linear Search with example?	/M 7M
	(0)	Explain Exchange Sort with example?	/ 1/1
0	(a)	UNIT-V Define Structure? Explain declaration and initialization of a Structure?	714
).	(a)	Explain Logical Bitwise and Shift Operators?	/ IVI 71 /
	(0)		/1 VI
10.	(a)	(ON) Define Union? Explain declaration and initialization of a Union?	7M
- ••	(h)	Write a C Program to find addition of 2 Numbers using pointers?	7 IVI 7 M
		whice a C r rogram to mile addition of 2 roumoers using politices:	/ 11/1

	Q.P	. Code: 917612		SET - 1	
L	K.S.I B. T	R.M. COLLEGE OF ech. II Sem. (R15) Su	FENGINEERING (AUTONOMOUS), I upple. Examinations of September/Octo : Mathematics – II (CE_ME)	KADAPA ober 2020	I
Т	ime : 3	Hours	. Munemans – II (CE, ME)	Max. Marks: 70	
		Answer any FIVE Q All o	uestions choosing one question from each u questions carry Equal Marks.	unit.	
			UNIT - I		
1.	(a)	Find the directional derivative direction of the vector i	ivative of $f(x, y, z) = xy^2 z + x^2 yz^3$ at the point (2 +2j+2k	2, -1, 1) in the	7M
	(b)	If $\overline{f} = (2x+3y)i + (4y-4y)i +$	(-2z)j + (x + pz)k is Solenoidal, find p (OR)		7M
2.	(a)	Prove that $\nabla(r^n) = nr^{n-2}$	$2\overline{r}$		7M
	(b)	Evaluate by Green's the	eorem $\iint_C (y - \sin x) dx + \cos x dy$ Where C is the tr	iangle	7M
		enclosed by the lines y	$=0, x = \frac{\pi}{2}, \pi y = 2x$		
2			UNIT – II		
3.	(a)	Find $L\left(\frac{\sin 3t \cos t}{t}\right)$			7M
	(b)	Evaluate $\int_{0}^{\infty} te^{-3t} \sin t dt$	using Laplace Transform		7M
			(OR)		
4.	(a)	Find $L(t^2u(t-2))$			7M
	(b)	Find the Laplace transfo	form of the full-wave rectifier $f(t) = E \sin \omega t, 0 < E$	$t < \frac{\pi}{\omega}$, having	7M
		period $\frac{\pi}{\omega}$			
5	(\mathbf{a})		UNIT – III		714
5.	(<i>a</i>)	Find the inverse Laplace	e transform of $\frac{s+2}{s^2-4s+12}$		/ 101
	(b)	Find $L^{-1}\left(\frac{1}{s(s^2+a^2)}\right)$ us	$s^{5} - 4s + 15$ sing partial fractions		7M
			(OR)		
6.	(a)	Use Convolution theore	m, find $L^{-1}\left(\frac{1}{(s+a)(s+b)}\right)$		7M
	(b)	Use Laplace transform r	method, solve $(D^2 + 4D + 5)y = 5$, given $y(0) = 0$	(0, y'(0)) = 0	7M
7	(a)	Expand $f(x) = x$ as hal	f range sine series in $0 < r < 2$		7M
	(b)	Obtain the Fourier cosin	the series of $x \sin x$ in $0 \le x \le \pi$		7M
			(OR)		

Find the Fourier series expansion for f(x), if $f(x) = -\pi, -\pi < x < 0$ = $x, 0 < x < \pi$ Deduce that 14M

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

8.

UNIT-V

9. (a) Form the Partial Differential Equation by eliminating arbitrary constants for 7M $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

(b) Using the method of separation of variables, solve $2x \frac{\partial z}{\partial x} - 3y \frac{\partial z}{\partial y} = 0$ 7M

(OR)

10. A tightly stretched string with fixed end points x=0 and x=l is initially in a 14M position given by $y = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement y(x,t)

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Human Values and Professional Ethics (EEE, ECE & CSE)

Time : 3 Hours

(b)

Max. Marks: 70

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

- 1. (a) What are the types of inquiries?
 - (b) What are the roots of your personal ethics?

(OR)

- 2. (a) What are Engineering ethics?
 - (b) Explain Kohlberg's Theory.

UNIT – II

- 3. (a) Discuss Research Ethics in detail.
 - (b) What is Morality?

(OR)

- 4. (a) What are the Three types of Enquiry?
 - (b) What is Moral Dilemma?

UNIT – III

- 5. (a) What are the responsibilities of a safety engineer?
 - What are the factors for safety and risk?

(OR)

- 6. (a) Explain the concept of Risk-Benefit Analysis?
 - (b) Discuss the Bhopal gas tragedy.

UNIT – IV

- 7. (a) Discuss the Intellectual Property Rights (IPR).
 - (b) How do engineers help society?

(OR)

- 8. (a) What are Professional rights?
 - (b) What are the social responsibilities of engineers?

UNIT-V

- 9. (a) Write a detailed note on Business Ethics
 - (b) What is the role of an engineering manager? (OR)
- 10. (a) What are the advantages of computer ethics?
 - (b) What are the 4 primary issues of computer ethics?

	Q.P	. Code: 918412	SET - 1	
	K.S. B. T	R.M. COLLEGE OF ech. II Sem. (R15) Sı	EXAMPLE 1 ENGINEERING (AUTONOMOUS), KADAPA 1 pple. Examinations of September/October 2020	
		SUB: Engine	ering Chemistry (EEE, ECE & CSE)	
Tin	ne:3	Hours	Max. Marks: 70)
		Answer any FIVE Qu All c	uestions choosing one question from each unit. questions carry Equal Marks.	
			UNIT - I	
1.		Explain the softened of warmethods.	ater by Ion-exchange process and explain the advantages over other	14M
_			(OR)	
2.	(a)	Define hardness and expla	in types of hardness	7M
	(b)	Write a short note on disad	lvantages of water.	7M
_			UNIT – II	
3.	(a)	Differences between Add	lition polymerisation and Condensation polymerisation	7M
	(b)	Differences between The	mo plastics and Thermosetting plastics	7M
		TT T 1. 1	(OR)	73.6
4.	(a)	Write a short note on pro	eparation, properties and applications of Bakelite	7M
	(b)	Write a short note on inc	organic polymers	/ M
5		Define accordant better	UNII – III	1 <i>4</i> N <i>I</i>
5.		diagram	y and explain working nature of lead actu battery with heat	1411
			(OR)	
6.	(a)	Define corrosion and expla	ain the mechanism of the dry corrosion.	8M
	(b)	Write a short note on sa	crificial anode cathodic protection	6M
			UNIT – IV	
7.		What are the characteristic coke by Otto Haffman's r	cs of metallurgical coke? Describe the manufacture of metallurgical nethod?	14M
_			(OR)	
8.		Define lubricant& expla	in properties of lubricants	14M
0			UNIT-V	
9.		Write 12 principles of gre	een chemistry and its applications.	14M
10	(9)	Write a short note on I	(UK)	71/
10.	(\mathbf{a})	Explain action of actal-	aws of photo chemistry	/ IVI 7 N/I
	(\mathbf{U})	Explain action of cataly	st & applications of catalyst	/ NI

Q.P. Code: 918612

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. II Sem. (R15) Supple. Examinations of September/October 2020 SUB: Engineering Physics (EEE, ECE & CSE)

Time: 3 Hours

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

- Describe with necessary theory, Fraunhofer diffraction due to a double slit. 1. (a)
 - Newton's rings are formed in reflected light with red light of λ =670 nm and with air film. (b) 4MThe radius of the 20^{th} dark ring is found to be 1.1 x 10^{-2} m. Find the radius of curvature of the lens and the radius of 30th dark ring.

(OR)

2. What are Einstein's coefficients? Obtain the relation between them. 10M (a) If the Acceptance Angle and fractional change in the refractive index of a fibre material are 4M(b) 23⁰ and 0.05 respectively. Calculate the refractive indices of the Core and Cladding of that fibre. UNIT – II Describe the Powder method for X-ray diffraction. Discuss the formation of diffraction 3. (a) 10M pattern on the photographic plate. The radius of Cu (fcc) is 1.278 A⁰. The first order Bragg reflection from (111) planes appear (b) 4Mat an angle of 21.7° . Determine the Wavelength of X-rays used. (OR) Write any six properties of Ultrasonics. Explain how Ultrasonics are used to detect the flaws 4. (a) 10M in a body, using Non-destructive testing. An ultrasonic generator has a quartz crystal whose thickness is 2 mm, density is 2650 kgm⁻³ (b) 4Mand Young's modulus is 7.9X10¹⁰ Nm⁻². Find the fundamental frequency of the generator. UNIT – III 5. (a) What are the properties of matter waves? Derive the de-Broglie equation for an electron, 10M accelerated through a potential difference of V volts. Calculate the minimum energy in eV that an electron can possess in an infinitely deep (b) 4Mpotential well of 4nm width. (OR)What are the salient features of Fermi-Dirac statistics? Illustrate the effect of temperature 6. (a) 10M on the F-D distribution function. Calculate the electrical conductivity of Copper, if the relaxation time of electrons at 300K is (b) 4M 10^{-14} Sec. (Concentration of free electrons in Copper is 8.44×10^{28}) UNIT - IV Explain the origin of Magnetic moment. Find the magnetic dipole moments due to orbital 7. 10M (a) and spin motions of an electron. The magnetic field strength of Copper is 10^{6} A/m. If the Magnetic Susceptibility of Copper (b) 4Mis -0.8×10^{-5} . Calculate the flux density and magnetization in Copper. (OR)Explain DC and AC Josephson effects. 8. (a) 10M Write notes on any four applications of Superconductors. 4M(b) UNIT-V 9. Derive the expressions for Drift and Diffusion currents in a Semiconductors. 8M (a) (b) Explain the formation of P-N junction diode. 6M (OR) 10. Explain any Eight physical properties of nanoparticles. (a) 8M Describe Chemical Vapour Deposition method of synthesis of nanomaterials. (b) 6M

Max. Marks: 70